Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Hypertension ; 81(2): 319-329, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38018457

RESUMEN

BACKGROUND: The chronic hypoxia of high-altitude residence poses challenges for tissue oxygen supply and metabolism. Exposure to high altitude during pregnancy increases the incidence of hypertensive disorders of pregnancy and fetal growth restriction and alters placental metabolism. High-altitude ancestry protects against altitude-associated fetal growth restriction, indicating hypoxia tolerance that is genetic in nature. Yet, not all babies are protected and placental pathologies associated with fetal growth restriction occur in some Andean highlanders. METHODS: We examined placental metabolic function in 79 Andeans (18-45 years; 39 preeclamptic and 40 normotensive) living in La Paz, Bolivia (3600-4100 m) delivered by unlabored Cesarean section. Using a selection-nominated approach, we examined links between putatively adaptive genetic variation and phenotypes related to oxygen delivery or placental metabolism. RESULTS: Mitochondrial oxidative capacity was associated with fetal oxygen delivery in normotensive but not preeclamptic placenta and was also suppressed in term preeclamptic pregnancy. Maternal haplotypes in or within 200 kb of selection-nominated genes were associated with lower placental mitochondrial respiratory capacity (PTPRD [protein tyrosine phosphatase receptor-δ]), lower maternal plasma erythropoietin (CPT2 [carnitine palmitoyl transferase 2], proopiomelanocortin, and DNMT3 [DNA methyltransferase 3]), and lower VEGF (vascular endothelial growth factor) in umbilical venous plasma (TBX5 [T-box transcription factor 5]). A fetal haplotype within 200 kb of CPT2 was associated with increased placental mitochondrial complex II capacity, placental nitrotyrosine, and GLUT4 (glucose transporter type 4) protein expression. CONCLUSIONS: Our findings reveal novel associations between putatively adaptive gene regions and phenotypes linked to oxygen delivery and placental metabolic function in highland Andeans, suggesting that such effects may be of genetic origin. Our findings also demonstrate maladaptive metabolic mechanisms in the context of preeclampsia, including dysregulation of placental oxygen consumption.


Asunto(s)
Placenta , Preeclampsia , Humanos , Embarazo , Femenino , Placenta/metabolismo , Cesárea , Retardo del Crecimiento Fetal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo , Fenotipo , Genómica
2.
Pregnancy Hypertens ; 34: 19-26, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37778281

RESUMEN

OBJECTIVES: Hypertensive disorders of pregnancy (HDP) exert a heavy mortality burden in low- to middle-income countries (LMIC). ACOG revised HDP diagnostic guidelines to improve identifying pregnancies at greatest risk but whether they are used in LMIC is unknown. STUDY DESIGN: We held a workshop to review ACOG guidelines in La Paz, Bolivia (BO) and then reviewed prenatal, labor and delivery records for all HDP diagnoses and twice as many controls at its three largest delivery sites during the year before and the nine months after a workshop (n = 1376 cases, 2851 controls during the two periods). MAIN OUTCOME MEASURES: HDP diagnoses, maternal, and infant characteristics. RESULTS: Bolivian and ACOG criteria identified similar frequencies of gestational hypertension (GH) or eclampsia, but preeclampsia with severe features (sPE) was under- and preeclampsia without severe features (PE) over-reported during both periods. Increases occurred after the workshop in testing for proteinuria and the detection of abnormal laboratory values and severe hypertension in HDP women. Any adverse maternal outcome occurred more frequently after the workshop in women with BO PE or sPE diagnoses who met ACOG sPE criteria. CONCLUSIONS: Utilization of ACOG guidelines increased following the workshop and improved identification of PE or sPE pregnancies with adverse maternal outcomes. Continued use of a CLAP perinatal form recognizing HELLP as the only kind of sPE resulted in under-reporting of sPE. FUNDING: NIH TW010797, HD088590, HL138181.


Asunto(s)
Síndrome HELLP , Hipertensión Inducida en el Embarazo , Preeclampsia , Embarazo , Femenino , Humanos , Preeclampsia/diagnóstico , Bolivia , Países en Desarrollo
3.
Physiol Genomics ; 55(9): 357-367, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37458464

RESUMEN

High-altitude (>2,500 m) residence increases the risk of pregnancy vascular disorders such as fetal growth restriction and preeclampsia, each characterized by impaired placental function. Genetic attributes of highland ancestry confer relative protection against vascular disorders of pregnancy at high altitudes. Although ion channels have been implicated in placental function regulation, neither their expression in high-altitude placentas nor their relationship to high-altitude preeclampsia has been determined. Here, we measured the expression of 26 ion-channel genes in placentas from preeclampsia cases and normotensive controls in La Paz, Bolivia (3,850 m). In addition, we correlated gene transcription to maternal and infant ancestry proportions. Gene expression was assessed by PCR, genetic ancestry evaluated by ADMIXTURE, and ion channel proteins localized by immunofluorescence. In preeclamptic placentas, 11 genes were downregulated (ABCC9, ATP2A2, CACNA1C, KCNE1, KCNJ8, KCNK3, KCNMA1, KCNQ1, KCNQ4, PKD2, and TRPV6) and two were upregulated (KCNQ3 and SCNN1G). KCNE1 expression was positively correlated with high-altitude Amerindian ancestry and negatively correlated with non-high altitude. SCNN1G was negatively correlated with African ancestry, despite minimal African admixture. Most ion channels were localized in syncytiotrophoblasts (Cav1.2, TRPP2, TRPV6, and Kv7.1), whereas expression of Kv7.4 was primarily in microvillous membranes, Kir6.1 in chorionic plate and fetal vessels, and MinK in stromal cells. Our findings suggest a role for differential placental ion channel expression in the development of preeclampsia. Functional studies are needed to determine processes affected by these ion channels in the placenta and whether therapies directed at modulating their activity could influence the onset or severity of preeclampsia.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Femenino , Humanos , Placenta/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Altitud , Canales Iónicos/genética , Canales Iónicos/metabolismo , Expresión Génica
4.
Am J Physiol Endocrinol Metab ; 324(6): E556-E568, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126847

RESUMEN

Glucose, lactate, and amino acids are major fetal nutrients. During placental insufficiency-induced intrauterine growth restriction (PI-IUGR), uteroplacental weight-specific oxygen consumption rates are maintained, yet fetal glucose and amino acid supply is decreased and fetal lactate concentrations are increased. We hypothesized that uteroplacental metabolism adapts to PI-IUGR by altering nutrient allocation to maintain oxidative metabolism. Here, we measured nutrient flux rates, with a focus on nutrients shuttled between the placenta and fetus (lactate-pyruvate, glutamine-glutamate, and glycine-serine) in a sheep model of PI-IUGR. PI-IUGR fetuses weighed 40% less and had decreased oxygen, glucose, and amino acid concentrations and increased lactate and pyruvate versus control (CON) fetuses. Uteroplacental weight-specific rates of oxygen, glucose, lactate, and pyruvate uptake were similar. In PI-IUGR, fetal glucose uptake was decreased and pyruvate output was increased. In PI-IUGR placental tissue, pyruvate dehydrogenase (PDH) phosphorylation was decreased and PDH activity was increased. Uteroplacental glutamine output to the fetus and expression of genes regulating glutamine-glutamate metabolism were lower in PI-IUGR. Fetal glycine uptake was lower in PI-IUGR, with no differences in uteroplacental glycine or serine flux. These results suggest increased placental utilization of pyruvate from the fetus, without higher maternal glucose utilization, and lower fetoplacental amino acid shuttling during PI-IUGR. Mechanistically, AMP-activated protein kinase (AMPK) activation was higher and associated with thiobarbituric acid-reactive substances (TBARS) content, a marker of oxidative stress, and PDH activity in the PI-IUGR placenta, supporting a potential link between oxidative stress, AMPK, and pyruvate utilization. These differences in fetoplacental nutrient sensing and shuttling may represent adaptive strategies enabling the placenta to maintain oxidative metabolism.NEW & NOTEWORTHY These results suggest increased placental utilization of pyruvate from the fetus, without higher maternal glucose uptake, and lower amino acid shuttling in the placental insufficiency-induced intrauterine growth restriction (PI-IUGR) placenta. AMPK activation was associated with oxidative stress and PDH activity, supporting a putative link between oxidative stress, AMPK, and pyruvate utilization. These differences in fetoplacental nutrient sensing and shuttling may represent adaptive strategies enabling the placenta to maintain oxidative metabolism at the expense of fetal growth.


Asunto(s)
Insuficiencia Placentaria , Humanos , Embarazo , Femenino , Animales , Ovinos , Insuficiencia Placentaria/metabolismo , Placenta/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Glutamina/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Feto/metabolismo , Glucosa/metabolismo , Ácido Láctico/metabolismo , Aminoácidos/metabolismo , Nutrientes , Glicina/metabolismo , Serina/metabolismo , Piruvatos/metabolismo , Oxígeno/metabolismo
5.
High Alt Med Biol ; 23(4): 352-360, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36472463

RESUMEN

Mundo, William, Lilian Toledo-Jaldin, Alexandrea Heath-Freudenthal, Jaime Huayacho, Litzi Lazo-Vega, Alison Larrea-Alvarado, Valquiria Miranda-Garrido, Rodrigo Mizutani, Lorna G. Moore, Any Moreno-Aramayo, Richard Gomez, Patricio Gutierrez, and Colleen G. Julian. Is maternal cardiovascular performance impaired in altitude-associated fetal growth restriction? High Alt Med Biol. 23:352-360, 2022. Introduction: The incidence of fetal growth restriction (FGR) is elevated in high-altitude resident populations. This study aims to determine whether maternal central hemodynamics during the last trimester of pregnancy are altered in high-altitude FGR. Methods: In this cross-sectional study of maternal-infant pairs (FGR, n = 27; controls, n = 26) residing in La Paz, Bolivia, maternal heart rate, cardiac output (CO), stroke volume, and systemic vascular resistance (SVR) were assessed using continuous-wave Doppler ultrasound. Transabdominal Doppler ultrasound was used for uterine artery (UtA) resistance indices and fetal measures. Maternal venous soluble fms-like tyrosine kinase-1 (sFlt1) levels were measured. Results: FGR pregnancies had reduced CO, elevated SVR and UtA resistance, fetal brain sparing, and increased maternal sFlt1 versus controls. Maternal SVR was positively associated with UtA resistance and inversely associated with middle cerebral artery resistance and birth weight. Maternal sFlt1 was greater in FGR than controls and positively associated with UtA pulsatility index. Women with elevated sFlt1 levels also tended to have lower CO and higher SVR. Conclusion: Noninvasive assessment of maternal cardiovascular function may be an additional method for detecting high-risk pregnancies at high altitudes, thereby informing the need for increased surveillance and appropriate allocation of resources to minimize adverse outcomes.


Asunto(s)
Retardo del Crecimiento Fetal , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Embarazo , Femenino , Humanos , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/diagnóstico , Altitud , Estudios Transversales
6.
J Physiol ; 600(24): 5353-5364, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36286320

RESUMEN

High-altitude (>2500 m or 8200 ft) residence reduces uterine artery blood flow during pregnancy, contributing to an increased incidence of preeclampsia and intrauterine growth restriction. However, not all pregnancies are affected by the chronic hypoxic conditions of high-altitude residence. K+ channels play important roles in the uterine vascular adaptation to pregnancy, promoting a reduction in myogenic tone and an increase in blood flow. We hypothesized that, in pregnancies with normal fetal growth at high altitude, K+ channel-dependent vasodilatation of myometrial arteries is increased compared to those from healthy pregnant women at a lower altitude (∼1700 m). Using pharmacological modulation of two K+ channels, ATP-sensitive (KATP ) and large-conductance Ca2+ -activated (BKCa ) K+ channels, we assessed the vasodilatation of myometrial arteries from appropriate for gestational age (AGA) pregnancies in women living at high or low altitudes. In addition, we evaluated the localization of these channels in the myometrial arteries using immunofluorescence. Our results showed an endothelium-dependent increase in KATP -dependent vasodilatation in myometrial arteries from high versus low altitude, whereas vasodilatation induced by BKCa activation was reduced in these vessels. Additionally, KATP channel co-localization with endothelial markers was reduced in the high-altitude myometrial arteries, which suggested that the functional increase in KATP activity may be by mechanisms other than regulation of channel localization. These observations highlight an important contribution of K+ channels to the human uterine vascular adaptation to pregnancy at high altitude serving to maintain normal fetal growth under conditions of chronic hypoxia. KEY POINTS: High-altitude (>2500 m or 8200 ft) residence reduces uterine blood flow during pregnancy and fetal growth. Animal models of high altitude/chronic hypoxia suggest that these reductions are partially due to reduced vascular K+. channel responses, such as those elicited by large conductance Ca2+ -activated (BKCa ) and ATP-sensitive (KATP ) K+ channel activation. We found that women residing at high versus low altitude during pregnancy showed diminished myometrial artery vasodilatory responses to endothelium-independent BKCa channel activation but greater responses to endothelium-dependent KATP channel activation. Our observations indicate that KATP channels play an adaptive role in maintaining myometrial artery vasodilator sensitivity under chronic hypoxic conditions during pregnancy. Thus, KATP channels represent potential therapeutic targets for augmenting uteroplacental blood flow and, in turn, preserving fetal growth in cases of uteroplacental hypoperfusion.


Asunto(s)
Mal de Altura , Vasodilatación , Animales , Humanos , Femenino , Embarazo , Vasodilatación/fisiología , Altitud , Canales de Potasio , Arterias/fisiología , Hipoxia , Adenosina Trifosfato
7.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R694-R699, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36094446

RESUMEN

In healthy near-term women, blood flow to the uteroplacental circulation is estimated as 841 mL/min, which is greater than in other mammalian species. We argue that as uterine venous Po2 sets the upper limit for O2 diffusion to the fetus, high uterine artery blood flow serves to narrow the maternal arterial-to-uterine venous Po2 gradient and thereby raise uterine vein Po2. In support, we show that the reported levels for uterine artery blood flow agree with what is required to maintain normal fetal growth. Although residence at high altitudes (>2,500 m) depresses fetal growth, not all populations are equally affected; Tibetans and Andeans have higher levels of uterine artery blood flow than newcomers and exhibit normal fetal growth. Estimates of uterine venous Po2 from the umbilical blood-gas data available from healthy Andean pregnancies indicate that their high levels of uterine artery blood flow are consistent with their reported, normal birth weights. Unknown, however, are the effects on placental gas exchange of the lower levels of uterine artery blood flow seen in high-altitude newcomers or hypoxia-associated pregnancy complications. We speculate that, by widening the maternal artery to uterine vein Po2 gradient, lower levels of uterine artery blood flow prompt metabolic changes that slow fetal growth to match O2 supply.


Asunto(s)
Placenta , Circulación Placentaria , Animales , Humanos , Embarazo , Femenino , Placenta/metabolismo , Arteria Uterina/metabolismo , Oxígeno , Desarrollo Fetal/fisiología , Mamíferos/metabolismo
8.
Front Physiol ; 13: 885295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035495

RESUMEN

The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.

9.
Artículo en Inglés | MEDLINE | ID: mdl-35719175

RESUMEN

Background: Hypertensive disorders of pregnancy (HDP) are a leading cause of maternal death in low- to middle-income countries (LMIC). The American College of Obstetricians and Gynecologists (ACOG) updated diagnostic guidelines to align signs and symptoms with those associated with maternal death. We performed an observational study to ask whether ACOG guidelines were employed and associated with adverse outcomes in La Paz-El Alto, Bolivia, an LMIC. Methods: Medical records for all HDP discharge diagnoses (n = 734) and twice as many controls (n = 1647) were reviewed for one year at the three largest delivery sites. For the 690 cases and 1548 controls meeting inclusion criteria (singleton, 18-45 maternal age, local residence), health history, blood pressures, symptoms, lab tests, HDP diagnoses (i.e., gestational hypertension [GH]; preeclampsia [PE]; haemolysis, low platelets, high liver enzymes [HELLP] syndrome, eclampsia), and adverse outcomes were recorded. Bolivian diagnoses were compared to ACOG guidelines using accuracy analysis and associated with adverse outcomes by logistic regression. Findings: Both systems agreed with respect to eclampsia, but only 27% of all Bolivian HDP diagnoses met ACOG criteria. HDP increased adverse maternal- or perinatal-outcome risks for both systems, but ACOG guidelines enabled more pre-delivery diagnoses, graded maternal-risk assessment, and targeting of HDP terminating in maternal death. Interpretation: Bolivia diagnoses agreed with ACOG guidelines concerning end-stage disease (eclampsia) but not the other HDP due mainly to ACOG's recognition of a broader range of severe features. ACOG guidelines can aid in identifying pregnancies at greatest risk in LMICs, where most maternal and perinatal deaths occur. Funding: NIH TW010797, HD088590, HL138181, UL1 TR002535.

10.
Hypertension ; 79(6): 1286-1296, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35437031

RESUMEN

BACKGROUND: Preeclampsia and fetal growth restriction increase cardiopulmonary disease risk for affected offspring and occur more frequently at high-altitude (≥2500 m). Retrospective studies indicate that birth to a preeclampsia woman at high altitude increases the risk of pulmonary hypertension (PH) in later life. This prospective study asked whether preeclampsia with or without fetal growth restriction exaggerated fetal hypoxia and impaired angiogenesis in the fetal lung, leading to neonatal cardiopulmonary circulation abnormalities and neonatal or infantile PH. METHODS AND RESULTS: We studied 79 maternal-infant pairs (39 preeclampsia, 40 controls) in Bolivia (3600-4100 m). Cord blood erythropoietin, hemoglobin, and umbilical artery and venous blood gases were measured as indices of fetal hypoxia. Maternal and cord plasma levels of angiogenic (VEGF [vascular endothelial growth factor]) and antiangiogenic (sFlt1 [soluble fms-like tyrosine kinase]) factors were determined. Postnatal echocardiography (1 week and 6-9 months) assessed pulmonary hemodynamics and PH. Preeclampsia augmented fetal hypoxia and increased the risk of PH in the neonate but not later in infancy. Pulmonary abnormalities were confined to preeclampsia cases with fetal growth restriction. Maternal and fetal plasma sFlt1 levels were higher in preeclampsia than controls and positively associated with PH. CONCLUSIONS: The effect of preeclampsia with fetal growth restriction to increase fetal hypoxia and sFlt1 levels may impede normal development of the pulmonary circulation at high altitude, leading to adverse neonatal pulmonary vascular outcomes. Our observations highlight important temporal windows for the prevention of pulmonary vascular disease among babies born to highland residents or those with exaggerated hypoxia in utero or newborn life.


Asunto(s)
Hipertensión Pulmonar , Preeclampsia , Altitud , Femenino , Retardo del Crecimiento Fetal , Hipoxia Fetal , Humanos , Hipertensión Pulmonar/etiología , Recién Nacido , Factor de Crecimiento Placentario , Embarazo , Estudios Prospectivos , Estudios Retrospectivos , Factor A de Crecimiento Endotelial Vascular , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular
11.
J Matern Fetal Neonatal Med ; 35(7): 1264-1271, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32228111

RESUMEN

OBJECTIVES: To determine whether the full spectrum of hypertensive disorders of pregnancy (HDP) - comprising gestational hypertension; preeclampsia with or without severe features; eclampsia; and Hemolysis, Elevated Liver enzymes, and Low Platelets (HELLP) Syndrome - is increased at high (≥2500 m, 8250 ft) compared with lower altitudes in Colorado independent of maternal background characteristics, and if so their relationship to neonatal well-being. METHODS: A retrospective cohort study was conducted using statewide birth-certificate data to compare the frequency of gestational hypertension, preeclampsia (with or without severe features), eclampsia, HELLP Syndrome, or all HDP combined in 617,958 Colorado women who lived at high vs. low altitude (<2500 m) and delivered during the 10-year period, 2007-2016. We also compared blood-pressure changes longitudinally during pregnancy and the frequency of HDP in 454 high (>2500 m)- vs. low (<1700 m)-altitude Colorado residents delivering in 2013 and 2014, and matched for maternal risk factors. Data were compared between altitudes using t-tests or chi-square, and by multiple or logistic regression analyses to adjust for risk factors and predict specific hypertensive or neonatal complications. RESULTS: Statewide, high-altitude residence increased the frequency of each HDP disorder separately or all combined by 33%. High-altitude women studied longitudinally also had more HDP accompanied by higher blood pressures throughout pregnancy. The frequency of low birth weight infants (<2500 g), 5-min Apgar scores <7, and NICU admissions were also greater at high than low altitudes statewide, with the latter being accounted for by the increased incidence of HDP. CONCLUSIONS: Residence at high altitude constitutes a risk factor for HDP and recommends increased clinical surveillance. The increased incidence also makes high altitude a natural laboratory for evaluating the efficacy of predictive biomarkers or new therapies for HDP.


Asunto(s)
Hipertensión Inducida en el Embarazo , Preeclampsia , Altitud , Presión Sanguínea , Femenino , Humanos , Hipertensión Inducida en el Embarazo/epidemiología , Hipertensión Inducida en el Embarazo/etiología , Lactante , Recién Nacido , Preeclampsia/epidemiología , Preeclampsia/etiología , Embarazo , Estudios Retrospectivos
12.
Pediatr Res ; 91(1): 17-18, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34650197
13.
Physiol Rep ; 9(18): e15033, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34558219

RESUMEN

Gestational hypoxemia is often associated with reduced birth weight, yet how hypoxemia controls uteroplacental nutrient metabolism and supply to the fetus is unclear. This study tested the effects of maternal hypoxemia (HOX) between 0.8 and 0.9 gestation on uteroplacental nutrient metabolism and flux to the fetus in pregnant sheep. Despite hypoxemia, uteroplacental and fetal oxygen utilization and net glucose and lactate uptake rates were similar in HOX (n = 11) compared to CON (n = 7) groups. HOX fetuses had increased lactate and pyruvate concentrations and increased net pyruvate output to the utero-placenta. In the HOX group, uteroplacental flux of alanine to the fetus was decreased, as was glutamate flux from the fetus. HOX fetuses had increased alanine and decreased aspartate, serine, and glutamate concentrations. In HOX placental tissue, we identified hypoxic responses that should increase mitochondrial efficiency (decreased SDHB, increased COX4I2) and increase lactate production from pyruvate (increased LDHA protein and LDH activity, decreased LDHB and MPC2), both resembling metabolic reprogramming, but with evidence for decreased (PFK1, PKM2), rather than increased, glycolysis and AMPK phosphorylation. This supports a fetal-uteroplacental shuttle during sustained hypoxemia whereby uteroplacental tissues produce lactate as fuel for the fetus using pyruvate released from the fetus, rather than pyruvate produced from glucose in the placenta, given the absence of increased uteroplacental glucose uptake and glycolytic gene activation. Together, these results provide new mechanisms for how hypoxemia, independent of AMPK activation, regulates uteroplacental metabolism and nutrient allocation to the fetus, which allow the fetus to defend its oxidative metabolism and growth.


Asunto(s)
Adaptación Fisiológica , Hipoxia/metabolismo , Intercambio Materno-Fetal , Circulación Placentaria , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Aminoácidos/metabolismo , Animales , Femenino , Glucólisis , Hipoxia/fisiopatología , Ácido Láctico/metabolismo , Oxígeno/metabolismo , Embarazo , Ácido Pirúvico/metabolismo , Ovinos
14.
Placenta ; 104: 267-276, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33472134

RESUMEN

INTRODUCTION: High-altitude (>2500 m) residence augments the risk of intrauterine growth restriction (IUGR) and preeclampsia likely due, in part, to uteroplacental hypoperfusion. Previous genomic and transcriptomic studies in humans and functional studies in mice and humans suggest a role for AMP-activated protein kinase (AMPK) pathway in protecting against hypoxia-associated IUGR. AMPK is a metabolic sensor activated by hypoxia that is ubiquitously expressed in vascular beds and placenta. METHODS: We measured gene expression and protein levels of AMPK and its upstream regulators and downstream targets in human placentas from high (>2500 m) vs. moderate (~1700 m) and low (~100 m) altitude. RESULTS: We found that phosphorylated AMPK protein levels and its downstream target TSC2 were increased in placentas from high and moderate vs. low altitude, whereas the phosphorylated form of the downstream target translation repressor protein 4E-BP1 was increased in high compared to moderate as well as low altitude placentas. Mean birth weights progressively fell with increasing altitude but no infants, by study design, were clinically growth-restricted. Gene expression analysis showed moderate increases in PRKAG2, encoding the AMPK γ2 subunit, and mechanistic target of rapamycin, MTOR, expression. DISCUSSION: These results highlight a differential regulation of placental AMPK pathway activation in women residing at low, moderate or high altitude during pregnancy, suggesting AMPK may be serving as a metabolic regulator for integrating hypoxic stimuli with placental function.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Altitud , Regulación de la Expresión Génica , Placenta/metabolismo , Transducción de Señal/genética , Adulto , Femenino , Humanos , Hipoxia/metabolismo , Embarazo
15.
Am J Physiol Heart Circ Physiol ; 320(3): H980-H990, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33416457

RESUMEN

Perinatal hypoxia induces permanent structural and functional changes in the lung and its pulmonary circulation that are associated with the development of pulmonary hypertension (PH) in later life. The mechanistic target of the rapamycin (mTOR) pathway is vital for fetal lung development and is implicated in hypoxia-associated PH, yet its involvement in the developmental programming of PH remains unclear. Pregnant C57/BL6 dams were placed in hyperbaric (760 mmHg) or hypobaric chambers during gestation (505 mmHg, day 15 through postnatal day 4) or from weaning through adulthood (420 mmHg, postnatal day 21 through 8 wk). Pulmonary hemodynamics and right ventricular systolic pressure (RVSP) were measured at 8 wk. mTOR pathway proteins were assessed in fetal (day 18.5) and adult lung (8 wk). Perinatal hypoxia induced PH during adulthood, even in the absence of a sustained secondary hypoxic exposure, as indicated by reduced pulmonary artery acceleration time (PAAT) and peak flow velocity through the pulmonary valve, as well as greater RVSP, right ventricular (RV) wall thickness, and RV/left ventricular (LV) weight. Such effects were independent of increased blood viscosity. In fetal lung homogenates, hypoxia reduced the expression of critical downstream mTOR targets, most prominently total and phosphorylated translation repressor protein (4EBP1), as well as vascular endothelial growth factor, a central regulator of angiogenesis in the fetal lung. In contrast, adult offspring of hypoxic dams tended to have elevated p4EBP1 compared with controls. Our data suggest that inhibition of mTORC1 activity in the fetal lung as a result of gestational hypoxia may interrupt pulmonary vascular development and thereby contribute to the developmental programming of PH.NEW & NOTEWORTHY We describe the first study to evaluate a role for the mTOR pathway in the developmental programming of pulmonary hypertension. Our findings suggest that gestational hypoxia impairs mTORC1 activation in the fetal lung and may impede pulmonary vascular development, setting the stage for pulmonary vascular disease in later life.


Asunto(s)
Hipoxia Fetal/complicaciones , Hipertensión Pulmonar/etiología , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neovascularización Fisiológica , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Femenino , Hipoxia Fetal/metabolismo , Hipoxia Fetal/fisiopatología , Edad Gestacional , Hemodinámica , Oxigenoterapia Hiperbárica , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Ratones Endogámicos C57BL , Fosforilación , Embarazo , Efectos Tardíos de la Exposición Prenatal , Circulación Pulmonar , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Función Ventricular Derecha , Presión Ventricular
16.
Reproduction ; 161(1): F81-F90, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33112770

RESUMEN

High altitude offers a natural laboratory for studying the effects of chronic hypoxia on reproductive health. Counter to early accounts, fertility (the number of livebirths) appears little affected although stillbirths are more common. Birth weights are lower due to fetal growth restriction, not shortened gestation. Multigenerational (Andean or Tibetan) compared with newcomer residents appear relatively protected from pregnancy loss as well as altitude-associated fetal growth restriction, perhaps due in part to preservation of the normal rise in uterine artery blood flow. Myometrial artery vasodilator response, a key determinant of uterine blood flow, is blunted in healthy Colorado high-altitude residents, similar to what occurs in intrauterine growth restriction or preeclampsia at low altitude. The high-altitude vessels are also more sensitive to the vasodilatory actions of AMP kinase (AMPK) activation. The gene region containing PRKAA1 (coding for AMPK's alpha-1 catalytic subunit) has been acted upon by natural selection in Andeans and is related to preservation of normal blood flow and fetal growth at high altitude, suggesting one mechanism by which high-altitude adaptation may have been achieved. Preeclampsia is more common at high altitudes but unknown is whether multigenerational residents are protected relative to newcomers. Postnatal loss is diminished in Tibetans vs Han with equal access to health care, perhaps due in part to better maintained arterial O2 saturation during infancy. Finally, pregnancy and intrauterine development not only affect immediate survival but also susceptibility to the later-in-life cardiovascular disease, chronic mountain sickness.


Asunto(s)
Altitud , Fertilidad , Hipoxia , Embarazo/fisiología , Femenino , Humanos , Lactante , Mortalidad Infantil , Recién Nacido , Salud Reproductiva
17.
J Physiol ; 598(18): 4093-4105, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32592403

RESUMEN

KEY POINTS: Pregnancy at high altitude is associated with a greater incidence of fetal growth restriction due, in part, to lesser uterine artery blood flow. AMP-activated protein kinase (AMPK) activation vasodilates arteries and may increase uterine artery blood flow. In this study, pharmacological activation of AMPK by the drug AICAR improved fetal growth and elevated uterine artery blood flow. These results suggest that AMPK activation is a potential strategy for improving fetal growth and raising uterine artery blood flow in pregnancy, which may be important in pregnancy disorders characterized by uteroplacental ischaemia and/or fetal hypoxia. ABSTRACT: Uteroplacental hypoxia is associated with pregnancy disorders such as intrauterine growth restriction and preeclampsia, which are characterized by uteroplacental ischaemia and/or fetal hypoxia. Activation of AMP-activated protein kinase (AMPK) results in vasodilatation and is therefore a potential therapeutic strategy for restoring uteroplacental perfusion in pregnancy disorders. In this study, C57Bl/6 mice were treated with subcutaneous pellets containing vehicle, the AMPK activator AICAR (200 mg kg-1 day-1 ), or the AMPK inhibitor Compound C (20 mg kg-1 day-1 ) beginning on gestational day 13.5, and were exposed to hypoxia starting on gestational day 14.5 that induced intrauterine growth restriction. Pharmacological AMPK activation by AICAR partially prevented hypoxia-induced fetal growth restriction (P < 0.01), due in part to increased uterine artery blood flow (P < 0.0001). The proportion of total cardiac output flowing through the uterine artery was increased with AICAR in hypoxic mice (P < 0.001), suggesting that the vasodilator effect of AICAR was selective for the uterine circulation. Further, pharmacological inhibition of AMPK with Compound C reduced uterine artery diameter and increased uterine artery contractility in normoxic mice, providing evidence that physiological levels of AMPK activation are necessary for vasodilatation in healthy pregnancy. Two-way ANOVA analyses indicated that hypoxia reduced AMPK activation in the uterine artery and placenta, and AICAR increased AMPK activation in these tissues compared to vehicle. These findings provide support for further investigation into the utility of pharmacological AMPK activation for treatment of fetal growth restriction.


Asunto(s)
Retardo del Crecimiento Fetal , Arteria Uterina , Proteínas Quinasas Activadas por AMP , Aminoimidazol Carboxamida/análogos & derivados , Animales , Femenino , Retardo del Crecimiento Fetal/tratamiento farmacológico , Hipoxia , Ratones , Circulación Placentaria , Embarazo , Ribonucleótidos
18.
Am J Physiol Heart Circ Physiol ; 319(1): H203-H212, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32502374

RESUMEN

High-altitude (>2,500 m) residence increases the incidence of intrauterine growth restriction (IUGR) due, in part, to reduced uterine artery blood flow and impaired myometrial artery (MA) vasodilator response. A role for the AMP-activated protein kinase (AMPK) pathway in protecting against hypoxia-associated IUGR is suggested by genomic and transcriptomic studies in humans and functional studies in mice. AMPK is a hypoxia-sensitive metabolic sensor with vasodilatory properties. Here we hypothesized that AMPK-dependent vasodilation was increased in MAs from high versus low-altitude (<1,700 m) Colorado women with appropriate for gestational age (AGA) pregnancies and reduced in IUGR pregnancies regardless of altitude. Vasoreactivity studies showed that, in AGA pregnancies, MAs from high-altitude women were more sensitive to vasodilation by activation of AMPK with A769662 due chiefly to increased endothelial nitric oxide production, whereas MA responses to AMPK activation in the low-altitude women were endothelium independent. MAs from IUGR compared with AGA pregnancies had blunted vasodilator responses to acetylcholine at high altitude. We concluded that 1) blunted vasodilator responses in IUGR pregnancies confirm the importance of MA vasodilation for normal fetal growth and 2) the increased sensitivity to AMPK activation in AGA pregnancies at high altitude suggests that AMPK activation helped maintain MA vasodilation and fetal growth. These results highlight a novel mechanism for vasodilation of MAs under conditions of chronic hypoxia and suggest that AMPK activation could provide a therapy for increasing uteroplacental blood flow and improving fetal growth in IUGR pregnancies.NEW & NOTEWORTHY Intrauterine growth restriction (IUGR) impairs infant well- being and increases susceptibility to later-in-life diseases for mother and child. Our study reveals a novel role for AMPK in vasodilating the myometrial artery (MA) from women residing at high altitude (>2,500 m) with appropriate for gestational age pregnancies but not in IUGR pregnancies at any altitude.


Asunto(s)
Mal de Altura/metabolismo , Arterias/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Miometrio/irrigación sanguínea , Proteínas Quinasas/metabolismo , Vasodilatación , Quinasas de la Proteína-Quinasa Activada por el AMP , Adulto , Mal de Altura/fisiopatología , Arterias/efectos de los fármacos , Arterias/fisiopatología , Compuestos de Bifenilo , Femenino , Retardo del Crecimiento Fetal/fisiopatología , Humanos , Óxido Nítrico/metabolismo , Embarazo , Pironas/farmacología , Tiofenos/farmacología
19.
Sci Rep ; 10(1): 4260, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32123262

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
Reprod Sci ; 27(2): 529-536, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31994005

RESUMEN

Residence at high altitude (> 2500 m) has been associated with an increased frequency of preeclampsia. Pappalysin-2 (PAPP-A2) is an insulin-like growth factor binding protein-5 (IGFBP-5) protease that is elevated in preeclampsia, and up-regulated by hypoxia in placental explants. The relationships between PAPP-A2, altitude, and indices of uteroplacental ischemia are unknown. We aimed to evaluate the association of altitude, preeclampsia, and uterine artery flow or vascular resistance with PAPP-A2 levels. PAPP-A2, uterine artery diameter, volumetric blood flow, and pulsatility indices were measured longitudinally in normotensive Andean women residing at low or high altitudes in Bolivia and in a separate Andean high-altitude cohort with or without preeclampsia. PAPP-A2 levels increased with advancing gestation, with the rise tending to be greater at high compared to low altitude, and higher in early-onset preeclamptic compared to normotensive women at high altitude. Uterine artery blood flow was markedly lower and pulsatility index higher in early-onset preeclamptic normotensive women compared to normotensive women. PAPP-A2 was unrelated to uterine artery pulsatility index in normotensive women but positively correlated in the early-onset preeclampsia cases. We concluded that PAPP-A2 is elevated at high altitude and especially in cases of early-onset preeclampsia with Doppler indices of uteroplacental ischemia.


Asunto(s)
Altitud , Placenta/irrigación sanguínea , Placenta/metabolismo , Preeclampsia/sangre , Proteína Plasmática A Asociada al Embarazo/análisis , Útero/irrigación sanguínea , Útero/metabolismo , Adulto , Estudios de Cohortes , Femenino , Humanos , Placenta/diagnóstico por imagen , Embarazo , Ultrasonografía Doppler , Arteria Uterina/diagnóstico por imagen , Útero/diagnóstico por imagen , Resistencia Vascular , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...